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Abstract
This paper studies the analytical model for the construction of the two-
dimensional Energized wave equation. The control operator is given in term
of space and time t independent variables. The integral quadratic objective
cost functional is subject to the constraint of two-dimensional Energized
diffusion, Heat and a source. The operator that shall be obtained extends the
Conjugate Gradient method (ECGM) as developed by Hestenes et al (1952,
[1]). The new operator enables the computation of the penalty cost, optimal
controls and state trajectories of the two-dimensional energized wave equation
when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT &
LJS, Issues 9, 2006, [2-4]) to appear in this series.

Keywords
Conjugate Gradient method (CGM), Extended Conjugate Gradient Method
(ECGM), Convolution integral, Control operator, Hilbert space, Integral

quadratic objective function

Introduction

The energized wave equation is a euphemism of wave with diffusion and source

effects. The constraint equation is generally a combination of wave and heat (energy) with a

source. It has the understated physical configuration:
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2 2 2
Lz@ Z(X,2 y,t) 1dz(x,y.,t) 0 Z(X,zy,t) L9 Z(X,zy,t) Fu(xy.b) (1
c ot d ot o0x oy
where ¢® and d are defined as the speed of propagation and diffusivity in a recognized
medium. Henceforth, to simplify computational burden, the two defined terms assume unity.

Thus, the wave part of equation (1) is

0’z(x,y,t) _ 0°z(x,y,t) . 0*z(X,y,t)

atZ aXZ ayZ (2)
while the energy or diffusion effect configuration is:
2 2
oz(x,y,t) _ 0z(x,y,t)  9°z(x,y,1) (3)

ot ox’ oy’
The term u(x,y,t) is the source (negative source), which controls some inflows at some control
demand; say into the medium of propagation.
This research is geared towards obtaining the operator that would enable complete the
stability, controllability and observability of the dynamical system of equation (1).
In this work, results retain their partial differential forms and we intent to get them
solved analytically in their time and space variables. In other words, the control operator

retains three independent variables (time t and the two space variables x and y).

Modelling the Problem

Problem P1
Our optimization problem P1 is modelled in according with the formulation of Waziri

[5]. The model of the two-dimensional energized wave equation is:
0

subject to the dynamical constraint:

minJ(z,u) = min{| | [[u*(x,y,t)+Z* (X, y, t)]dtdxdy} 4)

O
S )

azz(x,y,t) 0z(x,y,t) azz(x,y,t) azz(x,y,t)
x| ey

+u(x,y,t) )

with initial and boundary conditions:
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zy(X,y,0) = 2(X,¥);2,(X,¥,0) = 2,(x,¥); 2, (X, ¥,0) = 2, (X, y);
z,(X,5,0) =z, (X,¥); 2, (X,¥,0) = 2,, (X, );
z,(%,y,0)=2,(X,y);2,,(X,y,0) =z, (X, y);
z(0,y,t)=z (0,y,t)=z_(0,y,t)=0;
2(x,0,t) =z (x,0,t) =z, (x,0,t) = 0;
z(Ly,t)=z (Ly,t)=2z_(1,y,t)=0;
z(x,L,t)y=z (x,L,t) =z (x,1,t) =0;
0<t<1;0<x<L;0<y<l.
These initial conditions shall for usefulness in the construction of the inverse Laplace

transform in the derivation of the ECGM control operator.

Problem P2
To optimize the integral quadratic problem P1, we have to construct an unconstrained
equation by penalizing the dynamical constraint equation (4) with a cost functional u(x,y,t) >

0. The unconstraint equation is defined hereunder as:

yxt
minlJ(z,u,n) = min{_”J‘[u2 (X, y,1)+2° (X, y,1)]
U 2000

ey Of | | a 250D, 22D ©)
822()( Y1) 622(){ y, t)

P —u(x, y,t)” dtdxdy]}

Equation (6) in bilinear Hermitian form yields:

Problem P3

minJ(w,,w,) =min < w,,Aw, >, (7
where w = (w;, wy) and equation (7) denotes an inner product space expressible as:
Xt
mvjn <W,L,AW,), = min{J‘“A[z,Z2 +(A+p)+dd+pz,z,, +yuz,z,,
000

_MZItZZXX - MthZZyy + l’lZI);xZZXX + “lexZ2yy
+“Z1xxu2 - MZIyyZZtt - uzlyyZZt + leyyZZXX
Uz, 2, + Uz, U, — W7, — WL, Z, + UL, Z,

+uu,z,, + pu,u, Jdtdxdy}

(8)

It is important to note that the control operator associated with the penalized functional
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(8) is equivalent to that associated with its Bilinear Hermitian form (7); and equivalence is
preserved under the following equivalent laws:
Z] T 22T Z)Z T 2 T 2y Zin T 220 T 2ty Zlxx T Z2xx T Zxxwy Zlyy T Z2yy T Zy, U T U2 T U
The Bilinear Hermitian form (7) is conveniently written compactly as:

yxt
minJ <w,,Aw, >= min{J..HWIT(X, v, AW, (X, y, t)dtdxdy} 9)
000

Z,u z,

The H appearing in equation (9) symbolizes a Hilbert space which is defined as: H =
w2 [0,1][0,1]*1,°[0,1][0,1], where “*” is a multiplicative operator. The term w52 [0,1]]0,1] is
a Sobolev space of absolutely continuous functions X(:,-,t) squared integrable over the surface
space [a,b][c,d], while 1,°0,1]]0,1] is the Hilbert space of equivalence classes of real valued
functions on the surface [a,b][c,d].

The operator 4 in equation (9) is associated with equation (8) which is a squared
symmetric positive definite, linear inner product operator defined equivalently:

0O 0 0 0 0]
I+p I

O OO0 O O -
|
-
|
-
-
-
-

In the computational processes, the control operator A is not fixable for our integral
quadratic objective functional posed by problem P/. We need a new operator that would be
compatible to our problem. Hence, we must redesign the new control operator in line of the
development from [6]. Let the new control operator be recognized as B which has the same
Hilbert space property as defined on the control operator A and satisfies the Bilinear

Hermitian form.

Derivation of the ECGM Fundamental First Fourth Order PDE

In constructing the new control operator (otherwise known as the ECGM operator that

would replace the old operator A), we replace A with B in equation (8) such that:
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yxt
mvjn < W]:sz)n = min{jjj[z1zz + (1+ M)” VV +UZ,,Z, —HZ,,Z,,
000

Wi,Wa

“UZZyx —WZ1yZyy — HZy U, TUZZy,

Uz, 2, — 12,2, —MZ,Z,,, —UZ, U,
“HZZoy TUZ 2o TUZ (2, T UZ U,
—MZ,Zyy M2, 2y + U2, 7y + U2, 7,
Uz, u, —uz, — pu,z, + gz, + iz,

+pu,u, Jdtdxdy}

(10)

In a more compact format, equation (10) can be rewritten as:

B B z
szz[ 1 12“: 2} (11)
B, B, |lu,

We obtain B;; and B;; by setting u; = 0; in the same vein, set z, = 0 to obtain B;, and
B>. Now by setting u, = 0, equation (11) reads:
B11Z2 = E2;]32122 =Z,

Thus with u, = 0, equation (10) reads:

B, 1z, _ T " " _ _
= min{ (2,2, + W2, 2, + U2, Z,, — W2\ 25, WZ,,Z,,
B21Z2 zu 000

tUZZ, + W2\ Zy — W2\ Z) —MZ\ 2, —UZ) Zs (12)
_lexxzh + ”’ZIXXZZXX + MZIXXZZyy - ”’ZIXXZZtt - ”’ZIXXZZt
tUZ, Zo Y U2 7y — WL Zy — P Z) P Z,
+uu,z,,, Jdtdxdy}
Upon simplifying, equation (12), we have:
B, 1z, T
{B = mln{J‘J‘_[[ZlZz + tht(HZZtt +UZy —UZ,, — “Zzyy)
0% 21000
+z, (W2, + 12,y — UZ,,, — “Zzyy) (13)

TZ1x (“Zm +UZy, —UZ,,, — “ZZyy)
+2, (W2, +1Z,, + U2, — 12, )]dtdxdy}
On the strength of Gelfand and Fomin Lemma ([7], which we reproduce here in term

of our dimensional case), equation (13) can be solved.

Lemma (Gelfand-Fomin)

If p(x,y,t) and y(x,y,?) are continuous functions in closed region /a,b][c,d]:
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O© ey

[ [lo(x,y, Dh(x, v, +y'(x,y, D' (x,y, H]dtdxdy = 0
00

Vh(x,y,t) ec’[a,b][c,d] | h(a)=h'(b)=h(c)=h'(b) (14)
:> (P(X’y’t) = W,(X’Y7t) v X’y’t e[a,b][c,d]
In view of Lemma, reconsider equation (14) such that:
Y= 225 0= UZoy T UZot - Woxx - PZoyy; B = -0
We rewrite equation (14) and with the boundary assumption /x,y,t] = [1,1,1] as
inherited from the posed problem P/:
B, z, Er _ - -
= min A-Z)+z, (o— + -
{B} nini[ [ [,0--2)+ 2007+ 2B~ 7) as)
+lex (B - z2xx )]dthdy}

From equation (14), set:
B,z, = %2 =Wz, +UZ,, —UZy —UZ,, (16)
Invoking the Gelfand-Fomin (Lemma, ibid [7]), we must therefore have that the two

embedded factors in equation (15); (a-7Z,,), (B-Z,,, ), and (B-Z,,, ) are continuous functions

on the interval [0,x][0,y] and are continuously differentiable on the interval [0,1][0,1]; also

they are equipped with a normed space such that:

"

y|[+..+  max
0<x<1,0<y<1,0<t<l

(n)

y’|| +  max

0<x<1,0<y<1,0<t<I

y|| +  max

0<x<1,0<y<1,0<t<I

[yall=,.. max

0<x<1,0<y<1,0<t<1
where y™ is the n-th differential of y = y({) = [x,y,t] € [0,1][0,1]

Thus (a-7,,), (B-7,,), and (B-Z,,, ) are continuously partial differentiable functions

such that:

0’(0-%,) OB-Z,)  _ |

oy = ot =Y-7 (17)

Hence (17):

Oy _EZIIyy = Btt _zznyy (18)
Equation (18) resolves into the form:

oy, =Py (19)
But a = - B by symmetric definition; therefore equation (19) is rewritten as:

a, +o, =0 (20)

which is expressible uniquely as:
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MGZ (Ztt + Zt _Zxx - Zyy) + Haz (Ztt + Zt - Zxx _Zyy)
8y2 atZ

Thus, it is not difficult to see that equation (21) yields:

=0 21)

0'z(x,y,1) , 0'z(x,3,1)  0'2(x,y,0) 0'z(x,y,0)

at4 at?y ay4 ax28t2
(22)
L02(xy,0) d'z(xy.0) _
at8y2 8X28y2

The derivation of the ECGM fundamental second fourth order PDE
The second ECGM fourth order partial differential equation is obtained by setting z, =
0 in equation (13) such that:

B12u2 = ﬁz;Bzzuz = ﬁz (23)

By putting z, = 0, equation (10) becomes:
111

Bw, =min{[ [ [[u,(1+ Wu, +pz, wpz, 0 -pz, 0, - pz, 0, Jddxdyy— (24)
000

Let a - pug(X,y,t) and B - puayy(X,y,t) be continuous and continuously differentiable over the
space region [0,1][0,1]. Therefore invoking the Gelfand-Fomin algorithm and after some due
analytical simplification processes as in previous section, we obtained the second fourth order

partial differential equation:

0'z(x,y,1) , 0'2(x,y,1)

6},4 8y4 :uyy(X, Y, t)+un(xa Y, t) (25)
From equation (23), we deduced the element operator B;>:
Bz = (1+pua(x,y,t) (26)

We will in the next section solve equations (22) and (26) using the initial and

boundary conditions as inherited from problem P1/.

Solving the first and second fourth order PDE
We now solve the fourth order partial differential equation (22). By taking the Laplace
transform of equation (22) with respect to t-variable and considering the initial conditions as

stipulated from the original problem P/, we have the transformation:
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s*z(x,y,t)—s’z(x,y,0) —s°z,(x,y,0) - sz, (X, y,0) -z, (X,y,0)
+8°z(X, y,t) —s°z(X, y,0) —sz,(x,y,0) — 2, (X,y,0) — ., (X,Y,8)
—Z,,(X,y,0)+ s’z (X,y,0)+sz_(X,y,0)+s°z_ (X,y,0)s’
—Z,,(X,y,8) =0

Taking the Laplace transform further with respect to y and x variables, equation (27)

(27)

becomes:

s*z(A,p,s)—s°z(A, p,0)—s°z, (A, p,0) — sz, (A, p,0) -z, (A, p,0)
-52,(1,p,8) =, (A, p,0) ~p*z(%, p,8) + p z(%,p,0) +pz, (A, p,0)
+p4zyy (A, p,s) +sp’z(A, p,s) —sz, (A, 0,8) — sz, (A, p,s)—sz,(0,p,0)
+sA%z,(1,0,0)— Az, (0,p,s) -z, (0,p,0)— A*p’z(L, 0p,s) + Ap°z(0, p,s)
+Ap°z,(0,p,0) — A*pz(1,0,0) — pz(0,0,s) +1°2(0,0,s) + 1z(%, 0,5)
-12(0,0,8) + 2z, (A,p,0)+2 (0,0, s)p*=0

(28)

Considering the initial and boundary conditions, equation (5.2) is expressible as:
s*z(L,p,s)—s’z(A,p,0) =5z, (A, p,0) — sz, (A, p,0) -z, (A, p,0)
~2,,,(A,p,0) +5°z(,p,0)—s’z(A, p,0) — sz, (A, p,0) — 2, (X, p,0)

—p* (X, p,0)+5p> (A, p,0)—p* (X, p,0) +5°A°Z(A, p,8) + 5172, (A, p, 0)
Az, (A, p,0)—Az(A,p,0)=0

(29)

Dividing all terms in equation (29) by A%p’s* yields:

1 1 1
p4}\’2 2(7\‘ p,S) 4}\12 2 2(7\‘ p,O) Zt(x’ﬂpbo) 4}\’2 2 tt(}\’ p,O)

47\‘2 2

1 1 1
W Zy (A, 0) +—5- o' \%s z(h,p,0) - e —322(%,p,0)- P03} —332(%.p,0) a0

1 1 1 1
W 11(7\‘ p,O) 4 2 tO\'apaO)"' 4}\‘2 3 t(}\“ pas)__pZO\' p,S)

1 1 1
P8t SRS z, (%, p,0)+p4 72(h.p,8) = e — 7 2(%.p,8)=0

The inverse Laplace transforms with respect to each of the energized wave
independent space variables and time t are considered. Nonetheless, worthy to consider are
some vital propositions credited to (Reju, 1995 [8]); shall form useful tools in the derivation
of the inverse Laplace transform of equation (30).

The prepositions:
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e Preposition 1
n+l

H(0,p,t)
n!

n

j j (x— )L)H(k o, t)drdp =2 j

!
00 n.

H(A, p, t)dAdp —

O Sy H

e Preposition 2

y X (t S) tn y X )\ln+l
[ [ 10 p,0dsdp = [ [H(x,p,s)irddp—=——H(3,p,0)
00 n! 00 n!

e Preposition 3

[(t=9)H(,p,s)dsdp =" [ [H(%,p)dirds —t""H(0,p,s)
0 00

e Preposition 4

j”.(x —A)’H(A, p,s)dsdp = x j‘j.H A, p,s)drds —x""H(0, p,s)
00 00

Using the four stated preposition appropriately, the inverse Laplace transform to
equation (30), and then differentiating equation with respect to t-variable and simplifying

results, we obtain the element control operator B;; defined hereunder (B;,(x,y,t) = z(x,),1)):

X

xt? 1877 6 37
Bll = —32(X, Yy, 0) - _J-.[Z(X, Y, t)dXdy - _J.Z(Xa Y, t)dX - _J.Z(X’ Y, t)dy
y Y90 X Yo

0

y x X y X
+é_”z(x, y, 0)dxdy + ZIZ(X, y,0)dx + ﬁ_“‘zt (x,y,0)dxdy
y00 XOO
X 3t° 17 t
+—1z(x,y,0)dx + (x,y,0)dxdy + X,y,t)dx
tl(” 2XH y)yzgn(y)

y 2 3yx

+_Iztt9x Y, O)dXdy+t2 Ztt(X Y, t)+—J-J.Zn(X y:o)dXdy

t3 X t3 y
+_J.Zm (x,y,0)dx + —J. z,(X,y,0)dy +z,(x,y,0)
6x 2y

3+t 15 3%t
- ! ! { 2(x,y, Odtdxdy — — ! ! 7(x, y, t)dtdx — " { ! z(x,y,t)dtdy

t

y X X
—I z(x,y,t)dt + EJ.J-Z(X, y,0)dxdy + lJ-Z(X, y,0)dx
Xy 00 X 0

w (=}
| &

y y x X
+ Jz(x, y,0)dy + tz(x,y,t) + ﬂ‘”z(x, y,0)dxdy + LJ-Z(X, y,0)dx
0 XY 00 X% (31)
2 y X 2 X

_y[z(x Y, 0)dy+—_”z(x Y, O)d)(dijZ%J‘zt (x,y,0)dx +
0

0

+

<
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2y

3yX

2 Tty 0y + S x,y,0) 20 [y 00nay

2y
3 X 3y

t t
+—Jz[[(x,y,0)dx+—jz[l(x yO)dy+ ztt(x y,0)
6x 3y

0 0

t3 y
+2xy-!.

3xt

z(x,y, t)dtdxdy + —J.Iz(x y, t)dtdx — —Iz(x y,0)dt

2 xt

J.z(x, y,t)dtdxdy — iz”.z(x, y, t)dtdx
0 Xy

3

—3t’xy

S ¢ O %
Sl O

3yX

+—“‘z(x y, 0)dxdy — —jz(x y,0)dx + — 3t —7(X,y,0)
Xy y’

3y 3 4

3t t t
+— [200,y, 00y =2, (6, 5,0) -2, (x,7,0)
Xy Xy Xy

0

yt X 2 X
+3_2IIZX (x,y,t)dtdy _LIZX (x,y,0)dx — 3LIZX (x,y,0)dx
XY %% X Xy %

0

2 Yy X 2 X
ey 0) - 2 [ty 0dndy - [, oy

X \A 2x 9

3,[}' 2 3 y t3
——dem@@——dxmm——ﬁ(xmm®+——zuyﬁ>

2y% 0 Xy

£t 1 (31)

_F”'Z(x y,O)dxdy+—Iz(x y,O)dx+F_”z(x y, t)dtdx

——J.Z(X Y, O)dy ]/‘jj‘Z(X, Y, t)dthdY - %Z(X’ Y, 0)
000
4

4y

[ 2(xy, 0)dy ——
Xy

0

+

7 2(X,y,0)
xy’

Solution of the Second Fourth Order PDE

Reconsider equation (25) and taking the Laplace transform of each independent

variables x, y and t of equation (25) and differentiating the result with respect to t, yields:

3

t
y
?‘([ut (x,y,t)dt +

3

ty’ t’y
——|u,(x,y,0)dy +
6£n(y )y +=2

3

ﬁm@wﬁﬂy
’ (32)

y

t2y 2t2 y
_TJ.utt (Xa Y, t)dy - T£u(xa Y, O)dy =0

(=1
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By re-arranging equation (32) component-wise for the control operator B, we

obtained:
3 t
B22 (X’ Y, t) = 411(X, Y, t) _zju(xa Yat)dt +J.U(X, Y, t)dy
0 0
2 y Yy y
+JuCx,y, 00dy + [u,(x,y, 0)dy + tfu, (x.y, 0)dy
0 0 0

2y yt (33)
t
+?J.un (x,y,t)dy — 3ty“.utt (x,y,0)dtdy
0 00

Yy Yy
_yJ. Z(Xa Yy, t)d’y + 4y.|. Z(Xa Yy, O)dy
0 0

Summary for the Control Operator

We give summary of the analytical control operator hereunder:

B B z
sz =|: 11 12:||: 2:| (34)
BZI B22 u2

wherein w, = (z2, uy).

The summary of the control operator components are obtainable by referring to the
following listed equations. Equations (16), (26), (31) and (33) constitute the control operator
when substituted into equation (34). The substituted components completely define the
control operator that would replace the analytical operator 4 in the implementation of the
ECGM algorithm. In fact, the control operator B differs remarkably from the operator A4
obtained in section Modelling the Problem in that while the former is completely expressed in

matrix term of state variables and time, the latter is a matrix constant.

Conclusion
The control operator has been derived for the two-dimensional energized wave

equation. The operator shall form the framework in the derivation of the optimal control and

state trajectories numerical values using the conjugate gradient algorithm as formulated.
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